

David Sheets, Curtiss-Wright Defense Solutions

Types of Security

- Cyber Security (CS)
 - Protection against remote attacks
- Anti-Tamper (AT)
 - Protection against local attacks
- Reliability
 - Ensures HW and SW work as intended

Time Is the Enemy of Defense

Time allows attackers...

- More time to try attacks
- Finding more bugs
- Increases in technology
- Older systems that aren't updated

Quantum computing

Algorithmic obsolesces

What does this mean for us?

- Maximize resources
- Design for upgradability
- Find synergy where possible

Who is In Charge?

- For AT:
 - ATEA
 - Well defined process

Who is In Charge?...cont.

For CS:

- Independent programs
 - Much less guidance on requirements
- The Risk Mitigation Framework (RMF)
 - Only provides a framework
 - RMF is not a silver bullet
 - Still need to look outside confines of RMF
- Groups working to help define roles
 - Air Force: Cyber Resiliency Office for Weapons Systems

Security Requirements

- Too constrained limits design innovation
- Too loose may not meet system needs
- Security disciplines
 - Ensure appropriate mitigations
 - Still allow program cost/risk tradeoffs
- Common security concerns
 - Authenticity
 - Integrity
 - Confidentiality
 - Availability
- Difficulty in finding convergence

Impact of Classification

- AT and CS often implemented by different groups
- Classification levels
 - Can complicate interactions
 - Can stifle collaboration
 - Differences in Security Classification Guides (SCGs)

Prevalence of Open Source Tools

- Open Source prevalent in Cyber Security
- Explosive growth of concern over CS in the commercial world
- Department of Defense has concerns about use of Open Source
 - Insider Threat
 - Trojan Applications

Who Wins?

- Disagreements between disciplines will occur
- AT and CS may differ in responses
 - Continue mission?
 - Halt operation?
 - What does fail secure mean?
- How to resolve these issues?
 - Lack of centralized authority requires hard discussions
 - Analyze the risks
 - Get agreement between all stakeholders.
 - Discrepencies should be resolved early

Possible Synergy

- How can you find that magical synergy that everyone is always looking for?
- The Good News:
 - There are many promising areas for effective and efficient collaboration between AT and CS.

Cryptography

- Cryptography is an integral tool for both disciplines.
 - Share implementations between disciplines
 - Hardware-enabled cryptographic engines available
- Design new architecture for upgradability
- Plan for next tech refresh
 - Ensure refreshes enable new algorithms

Secure Boot

- Electronic systems need to start secure
 - Secure Boot
- Implementation details are architecture and system specific
- Each discipline has their own concerns
- Disciplines can work together to ensure that Secure Boot is robust
- Ensure commercial technologies continue to grow
 - Xilinx FPGAs
 - Intel Boot Guard
 - NXP Trust Architecture

Nature of Flaws

- Complexity of attacks are increasing
- Cyber attacks are getting increasingly sophisticated
 - Rowhammer Low level DDR timing exploit
 - Meltdown and Spectre Low level CPU pipeline exploits
 - Attacks no longer just exploiting software vulnerabilities
 - Targeting the lowest level of hardware to subvert system operation
- Cyber Security needs to understand low level hardware
- Both disciplines rely on hardware

Artificial Intelligence

- Artificial intelligence (AI) in security
- Relative infancy
- Coming soon
 - Systems learn their own behavior
 - Systems monitor for anomalies
- Al can drive cross domain synergy
 - Integration can strengthen both domains
 - Systems can learn their own environment

Safety

Safety shares goals with AT and CS

- Authenticity of hardware and software
- Integrity of the system

But...

- Decision on actions may differ
- Safety normally prioritizes continued operation

Partitioning Systems

- Offers integration of safety and security
- Can introduce complexity

Upgradability

- Most important aspect of security for most areas
- Difficult to securely implement at the lowest level
- Commercial vendors providing increasingly complex security
- Systems need to plan to grow with security needs
- Need secure methods for updating deployed firmware and software
 - Patch known flaws
 - Defend against new attacks

Speed is Essential

- During an attack, time is not on the defender's side
- Ensure systems can be updated quickly and efficiently
- Where to put resources
 - Seek the risk/cost balance in security (it's difficult!)
 - Stay up to date on the latest attacks
 - Quickly develop capabilities to mitigate attacks
 - Leverage capabilities to fulfill multiple requirements

Conclusion

- The process is difficult
- Vendors and suppliers are stepping up to provide new capabilities
- Enhance security of all DoD systems
- Security is a never-ending war
- Secure upgradability is key
- Convergence of disciplines will allow resources to go further

Thank You

CURTISS -WRIGHT

For more information about system security from the COTS perspective please contact us at ds@curtisswright.com.

www.curtisswrightds.com